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MINIMUM-DRAG DUCTED AND POINTED BODIES OF REVOLUTION BASED ON LINEARIZED
SUPERSOMC THEORY ‘

By -ON M. PARKER

SUMMARY

l!le lin.ewhd drag integralfor bodia Ofrevolw$ionai 8uper-
8onic speed.eis presented in a o?ow.bkin&gmlfomn which is-not
based on skn.o?er-bodyapproximabw bwtwhich redu.w to h
d 8fendt?r-bodyexpre+wionin theproper limit. Wiihlhe aid
of a M@My chQ8enauxiliary dtiion, &? mini?num-exkrnd-
wuwdrag problem is solved~or a transii%a section wnmmting
two 8emi-in@& c.yl&ulm8. The projectile tip ix a epecid case
and is comparedwii%the Von Kdrmdn projectile tip. CaLcula-
tl.orware prewnled which indti thui the &d of analyti
@k?8 goodjirst-orok’ re%w?i%in the moderate &uper80nkran#e.

INTRODUCTION

In making the slender-body approximation to the linear-
ized supersonic-tlow theory for bodie of revolution, a basic
approximation leads to replacing the axial source distribu-
tion with the cxms-sectional-area derivative. Slender-body
theory, therefore, becomes linear in the superposition sense
for cross-sectional areas S9 well as for sourcw or fields in
contrast to linear supersonic-flow theory which is linear in
the superposition sense for sour- or fialds but not for areas.
Making the sIender-body approximation, however, eliminates
a large part of the Mach number dependence of the results.
Lighthill (ref. 1) has shown that this basic approximation,
for sufficiently smooth bodies, has the same mathematical
order of accuracy as the linearized supersonic-flow equation.
Wrwd (ref. 2) has extended the gemxality of slender-body
theory by presenting a drag expression -whichis valid for a
body with a finite sIope at the base. Lighthill (ref. 3) has,
&t the price of a large increase in complexity, modified
slender-body theory to include areaderivative discontiuu-
itica at a finitenumber of points.

In 1935 Von lUrm6n (ref. 4) determined the minimum-
wave-drag projectile tip. Later Seam (ref. 5) and Haack
(ref. 6) determined minimum-wave-drag shapes for projectile
tips and closed bodies of revolution subjeot to various com-
binations of mmiliary conditions of constant length, constant
caliber, and constant volume. The Von K&m&n tip and
the Sears-Haack bodies are based on slender-body theory.
In contrast to the minimumdrag bodies of given volume,
which are accepted as reamnably good first-order results, the
minimum-drag projectile tips and open-nosed bodiw which
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have been derived from slender-body theory are subject to
more severe restrictions on the range and conditions for
validity. Busemamn (ref. 7) pointod out this fact for the
Von K4rm6n projectile tip in 1941. In the late 1930’s
Ferrari made studies of the minimumdrag projectile tip
and Iength-caliber body problems. Recently, Ferrari (refs.
8 and 9) has considered the length-caliber body and ducted-
body minimum-drag problems on the basis of linear theory
without resorting to slender-body approximations. He ob-
tains source-distribution functions which involve eIliptic in-
tegrals that have to be treated numerically.

This report presents the linearized-drag integral for bodies
of revolution in a double-integral form which is not based on
slender-body approximations but which reduces to Ward’s
drag expression in the proper limit. With the aid of a suit-
ably chosen auxiliary condition, the minimum-external-wave-
drag problem for a transition section connecting two semi-
infinite cylinders is solved. The source distribution, the
minimum-wave drag, the slopes at the ends of the section,
and the radius at one intermediate point are obtained in
terms of elementary functions. The entire shape is given
in an integd form amenable to numerical evaluation.
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SYMBOLS

constant factor in source-distribution func-
tion, ft/sec

drag coef6cient
drag, lb
source-distribution function
derivative of j with respect to its argument
free-stream Mach number
radius in cylindrical coordina@9
general radius of point on body
radius of downstream cylinder
radius of upstream cylinder
flrat and seoond derivatives of crow-sectional

area
free-stream veloci~, ft/sec
radial velociQ, ft/sec
axial velocity, ft/sec
axifd distance in cylindrical coordinate-s
position of first disturbance on control surface
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x axial distance for general point on body
$:4WT

variation in derivative of souroe-distribution
function

P free-stream density, slugs/cu ft
h arbitrary constant
bl dummy variablea of integration
h, no position on axis where sourc~ begin
4 disturbance potential

All distances are made &nensionless by measuring them
in the units of length of the transition section.

ANALYSIS
DRAG lNTEQRAL

The linearized-flow equation for the case of axial symme~
is (ref. 4)

(1)

where + is the disturbance potential, &=.M’— 1, and M is
the free-stream Mach number. The general solution of
equation (1) is (ref. 10) .

f$(x,r)=J~f(z–Br cosh u)du=–~-m f(’wt
-- -J(z-g)’-&#

(2)

The corresponding disturbance velocities are

(3)
and

a+
~=o,(z,r)= —J~f’(z-pr cosh u)fl cosh u du.

(4)

The genersl solution is interpreted physically as the dis-
turbance potential of a distribution of axial sources. The
souroedistribution function f(~) is fked by satisfying the
boundwy condition that the body surface be a stream
surface.

COMb5TTEE FOR AERONAUTICS

ArmlvinE the momentum and continuity theorems to the
flui{ “ti-tl& a cvlindrioal surface of radiu; R, and with tho
symmetry ti &mdlel to the str&m (hereinafter referred to
as the control surface) and using the faot that free-stream
conditions prevail at the two ends of the cylinder, z= co rmd
z= — co, yield the usual expression for the drag (rof, 4)

If a position x=L on the control surface is chosen so that,
for zZL, either o, or w=vanishes on the control surface, and
if % is the position of the fit disturbance on the control
surfaoe, equation (5) reduces to

.

D=–2r J~pRIV=(Z,BJ V,(Z,R~dX (6)

Substituting expressions (3) and (4) for the velocities into
equation (6), where b=qo=%—pill, the position on the
axis where the sources begin, yields

or

(8)

The basic slender-body approximation reduces the integral
over t in equation (7) to f(x). The use of equation (4) for

dr t?,small values of r and the boundary condition —=—dz ~ tiv~

f(x) proportional to the axial derivative of the cross-sectional
area. The slender-body approximation thus reduces the
integral of equation (8) to a double integral (over z and q).
In principle, the integral in equation (8) maybe reduced to
a double integral over t and n by interchanging the order of
integration and performing the integration over z, When
this process is attempted in equation (8), however, the
integration over x involves elliptic integrals and no essential
advantsge is gained.

However, the drag integral may be reduced to a double integral in the following manner. Equution (8) is rewritten
with the dummy variables ~ and T intercbmged. Addition of the interchanged and original expressions and division by 2
vieId

Interchanging the order of integration yields

(9)

(lo
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where the lower limit of the integral over z is g+13Rl or ~+ 19R1,whichever is the larger. The results of the integration
over z is (see the appendix for the details of the integration)

and the drag becomes

(12)

Equation (12) gives the drag of an axial distribution of sources j(g) which begins at & and is subject to the condition that
thwe is no momentum flow through the control cylinder of radius IL for z Z L.

In the slender-body approximation, equation (12) reduces
to Ward’s drag expression as follows. Use of the mcpression
for the radial velocity (eq. (4)) for small values of ~ and

the boundary condition $=; give

j(z)+’(z) (13)

where A’(x) is the tial derivative of the cross-sectional area.
I?or small values of RI, BR1may be neglected in the limits of
the integrals in equation (12) and the Cosh-l factor may be
appro.xinmtedby

(L–ML-+@’W =log [(_&+)(&_q)]–Cosh-1
PW-T)

19R,log 1~–ql–log ~ (14)

Simple manipulation, based on the assumption that A’(t)
is continuous and A’(~)= O,gives the Ward drag formula

D=_@
SS~ : : ALA’’ log 1$–~1‘@n+

–= [A’(L)]’ log ~~ A’(L) ~: A“(H log(L–t)@ AT

(15)

MINIMUM-DRAG PROBLEM

The problem of determiningg the shape of a transition sec-
tion connecting two semi-infinite cylinders for minimum ex-
ternal wave drag may be formulated in the following way.
(See fig, 1.) The upstream and downstream semi-iniinite
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FIGURBl.—Configumtion treated.

cylinders are of radius I& and RI, respectively. The length
of the transition section is taken as the unit in which all
dietancea are measured. The cylinder of radius RI is chosen
as the control surface.

Figure 1 is drawn for the case Rs<R1. However, the
statement of the problem is the same as for &.>Rl since only
the appropriate changes in sign occur. Equation (12) for
the drag becomes

(16)

The auxiliary condition for the minimum-wave-drag
problem is the requirement that the points z= 1,r=R, and
z=O, r=& be on the same stream surface. In terms of
ma9s flow this condition requires that the free-stream maas
flow between the control cylinder of radius RI and the up-
stream cylinder of radius & equals the mass flow out of the
control cylinder between z =P (R1—RJ and z= 1; that is,

J&Jn-(R:-R,’)= ‘
kiE,-E2)

2&Lu,(z#,) dz=cmstfd (17)
.

or

s;.l-.)s:;::a?d=:(R’-=cOnsOat’at
(18)

Equation (18) is a particularly convenient form of the
auxilimy condition in that the source-distribution function
is the only unknown involved. A direct integration of the
usual boundary condition would lead to an auxiliary condi-
tion involving, in addition, the unknown shape of the section.
Without further approximations, the minimum-drag prob-
lem would be unmanageable. It appeam impossible to
obtain an auxiliary condition of constant volume involving
the source-distribution function as the only unlmown.

Interchanging the order of integration in the left member
of equation (18) and integrating over z yield

J ‘-w’~(~)~(1–f)’–13’R? ds=: (R,2–R,’)=Constant (19)
-lm’

,
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The problem of minimk@ the drag given by equation (16), subject tc the auxiliary condition given by equation (19),
can be expressed in the usual manner of the calculus of variations. The expression

(where constant factors have been absorbed into the arbitrary constant X) must have a zero variation corresponding to an
arbitrary small variation ~~ in Y; that is,

@(f’+6f’, Rl, &)-QU’, R,, RJ=O

timbining two terms, after interchanging dummy variables and neglecting the term involving (~’)’, yields

Siice the variation ~j’ is arbitrary,

A~(l–t)’–P’R?=O (22)

An integration by parts, witif(-@?J=O, yields

J
l-p~

f (dh
=X=constant (23)

-m’ (g—?j)J(l— q)g—~l?l~

The integral equation (23) is the same equation that appears
in the minimum-induced-drag prcblem in lifting-line airfoil
theory.

The solution of the integral equation

j+2#.COm&ntJ —
is

Therefore, the solution of equation (23) is

(24)

(21)

The condition that j(–f?RJ =0 requires that (71=CPRZ
therefore,

cm
The source-distribution function for minimum wave drag is
part of an dlipse. The constant 0 is fixed by satisfying tho
auxiliary condition, equation (19). The final result for the
source-distribution function for minimum wave drag is

Figure 2, which has an arbitrary vertical scale, shows the
source distribution corresponding to the transition section
of minimum -wave drag.

I \.A-oxisI I I

-/3R2 O I-ml I 1+/3/7(

FIGURE2.-Sourcedistribution (arbitrary vertioal scale) corresponding
to transition seotion of minimum drag. Ellipseof whioh the distri-
bution is a partis shown by dashed curve.

MINIMUM-DRAG SHAPE

The expression for the minimumdrag shape is analogous to the auxiliary condition given by equation (17) except that a
control surface of arbitrary radius R is used, where R is the radius of the section at z =X (see fig. 1); the shape is given by

JPUT(R’-R,’)= x 2TPRG(Z,R) dx
B(lz-q

Interchanging the order of integration, integrating over z, and substituting the source-distibution function yield

(l+ PR1—/3RS
813’(R,’-R’9 x-p

J
2

–$ ~(X–.&f?Ri
13’(R2-RF)=

T(1—/3RI+I9&)(I+319RI+@J -~% &t+Rd (l+iRI–11 x

(27)

(28)

Since all the radii in equation (28) axe multiplied by p, one calculation gives a family of shapw for which, at a given value
of X, 19R(X)=Ccmstant. Thus the minimum~ag shape obeys the GNlmrtisimilarity rule (rd. 11).

-. ,
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At the general point (X, R), theint+ h equation (28) iIWOIVeSellipticintegralsand cannot be evaluated in elementmy
form. However, at one particular value of X, corresponding to the center of the source-distribution ellipse, the integral
reduces to elementary functions. Thus, for

(29)

Equation (28) may be solved by numerical-graphical methods. By a change of variable of the form

equation (28) is converted into the following form suitable for numerical integration:

The slope of the transition section at the general point (X, 1?) is found by differentiating equation (28). The result is

J’or the general point, equation (31) is not integrable in elementary form. However, at the downstream end of the section
(X= 1, R= R,) it maybe integrated directly. The result is

(32)

At the upstream end of the section, equation (31) may be evaluated by a suitable limiting proc&s. For example, if R=&
and X=G (where 6is a small quantiw), the kqm b equation (31) maybe evaluated if c is neglected in comparison with
quantities of the order of unity. After the evaluation, ● is allowed to vanish, and the result is

(33)

For &=O (the projectile tip), the front slope is equal to the slope of the Mach cone.
for RI#&.

MINIMUM WAVE DRAG
I

The expression for the minimum wave drag is obtained by
inmrting the sourcedietribution function (eq. (26)) into the
drag integral (eq. (16)). The expression for the drag of the
transition section is

rmd the drag coefficient (based on the area of
projected on rLplane normal to its &s) is

(34)

the section

(35)

REvEREmm’rY

The results for the reverse-flow case may be obtaineci
formally from the preceding direct-flow case by interchang- 1

ing RI and & If, in

-!

The back slope is different from zero

addition, X is replaced by I–X, the
X~station will be measured from the s&ne end-of the ‘con-
figuration. The transition-section-shape expression (eq.
(28)) can be shown to be an invariant relation between X
and R under the transformation

R,~&

RS*RI

X+”l–x

Since the present analysis is a linear treatment, the reversi-
bility of the minimum-drag shape cannot be considered as
established to an order higher than the first.

The drag coeilicient (eq. (35)) is not symmetrical in RI
and &. However, BY7=is symmetrical to the iirst order in
the small quantities ~Rl and @L or, if PRI and 19&are not
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small, 13W~is symmetrical to the first order in the quantities
flR1-19Rf and /31L-PR,. The minimum wave drag thus is
the same to the first order in the appropriate small quantities
for the directdlow and reverse-flow cases.

DISCUSSIONOF RESULTS

The drag integral (eq. (12)) presented in this report de-
pends upon the sourcedistibution function in the swne way
(except for slightly different weights of the kernel functions)
that the slender-body drag expression (eq. (15)) depends
upon the cross-sectional-area derivative. S&e bodies with
area-derivative &continuities can be generated by continu-
ous source distributions, equation (12) gives finite drag for
certuin types of bodies (for example, bodies with shoulders
forward of the base) for which the usual slender-body drag
expression divergw. The drag integral presented herein is
thus applicable to a larger class of bodies than the Ward
drag expression.

Some indication of the range of validity of equation (12)
isgiven by a comparison of the values of drag calculated by
various methods for seved cone% Figures 3 (8), 3(b),
and 3(c) present cone drag coefEcients plotted against PR1
for semivertex cones of 5°, 10°, and 15°, respectively. The
drags are calculated by the following methods:

Method A—The drag integral (eq. (12)) with mass-flow-
continuity (eq. (17) with G=O) used as the boundary
condition. Site the continuity condition is used in deriving
the drag integral, this method uses a consishnt boundary
condition.

Method B—The solution of the linearized supersonic-flow
equation for a cone (f’(:)= Constant) used with the exact

boundary condition
(%*)

and the exact pressure

equation. This method may be called the react linear’
method. Van Dyke (ref. 12) has presented cone drags by
this method.

Method C-The exact characteristics m&hod for conical
flow as given by reference 13.

Method D—The drag integral (eq. (12))withthe boundary

condition $&&. This method was used only for the 5°

cone. Each of the figures also shows the drag of the mini-
mum-drag projectile tip of the smne thickness ratio as was
determined in the present analysis (curve I in fig. 3).

Figures 3 (a), 3 (b), and 3 (c) show that the drag integd
with the continuity boundary condition (method A) gives
cone drags closer to the exact value (method C) than the
exact linear method (method B) for valuti of 13RII- than
approximately 0.30. I?rom a comparison of methods A and
D for the 5° cone, the divergence of the cone drag calculated
by method A as 13RP1.O is seen to be caused by the use of
the mass-flow continuity boundary condition. These results
i@cate that equation (12) with equation (17) as the bound-
ary condi&m gives good ilrst-order results for Mach numb~
above- the transonic range and less than the Mach number

. .
. . . . . ?,. i

,.”. . . . . .
:. .,,.
. . . .

at which the tangent of the Mach angle is less than appro.si-
mately three times the slope of the body, that is, a moderate
supersonic range.

Projectile tip (Ik=O).-Figure 4 presents two families
of minimumdrag projectile-tip shapes @Rl= 0.2 and 0.4)
calculated by equation (30). The Von Ktirmfin projectile

&
-.
~u=
s
3
wp
n

Method A Drag integral with mace-flow-continuity bound-
ary condition

Method B Exact linear method
Method C Exact oharaoteriatics method from referenoo 13

dr v,
Method D Drag integral with ~~==

I Drag coefficient of minimum-drag projootile tip

(a) 5° cone. -

(b) 10° cone. ~
(c) 15° cone.

FKHJEE3.—Compariaon of drag coefficient for three cones dokrminod
by several methodc and for minimum4rag projectile tip of camo
thioknesa ratio as the cone.

-, .,
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tip and the limiting cam 13RI=1.0 are shown for comparison.
The Mach number and thickness-ratio dependence are
related by the fact that the minimumdrag shape obeys the
Gi3thert similarity rule (ref. 11).The slope at the baae
varieEfrom zero tmthe cone slope aa PRIvaries from Oto 1.0.

In both the Von K6rm6n analysis and the present analysis
the basic assumptions of linearized theory are strongly
violated at the nose of the projectile tip. Specific remdts of
either analysis at the nose therefore cannot be accepted with
cotidence. However, inasmuch aa linear theory often
qualitatively predicts correct trends even outside its range
of quantitative validi~, it is interesting to note that in both
analyses the nose of the minimum-drag projectile tip is as
blunt as the analysis will allow (iniinite slope for the Von
Ktidn tip and tangent to the Mach cone in the present
amdysis). It is probably true that the exact shape of a
projectile tip for minimum wave drag haa a blunt nose.

I?igure 5 presents the ratio of the minimum-wave-drag
coefficient based on the base area to the Von K4rm4n drag
coefficient as a function of PR1. The ratio has a minimum
value at 13RI=0.33 and diverges as /3R1+l.0. The results

a14?EL_
o .2 .4 .6 .8 [.0

Distance along axis, X

Fxfmrm 4.—Minimum&ag projectiktip shwes. Von K&rm6n
projectile tip ‘k-shown for &mp&5son.

.-
.60 I 1 I I

,2 .6 .8
/4:,

Figure 6,—Ratio of minimum-wave-drag coefficient to Von K&muin

drng coefficient as a funotion of 8RI.

for the cone discmssed previously suggest that the drag
d.ivergea as 19Rlal.O because of the use of mass-flow con-
tinuity (eq. (17)) for the boundmy condition and that the
results are reasonably good for PRl 1sss than about 0.3.

General case.—Figure 6 presents the radius at an inter-
mediate point and the slopes at the two ends of the mini-
mum-extemabave-drag transition section for four configu-
rations with @R1—@&=o.4. Figure 7 presents these three
quantities for five configurations for which j9R1-~R,=0.05.
Equations (29), (32), and (33) indicate that for PR1–/3R,<~

verse curve lying withinthe truncatedcone connecting the
two cylinders for a distanca downstream of the nose which
increases as f?R1-~R2 decreases. The entire shape was
calculated by equation (30) for the case PR,–~R=o.05 and
0Rl+p&=0.118, which corresponds to the minimum front
elope for 13R1-@Z23=0.06 (shown in fig. 7). This reverse-
curve effect is more pronounced in the range of small values
of BR1—BR2,the range where the linearized treatment is
certainly correct.

For a comparison with the general case, the drag of ‘a
truncated-cone section for L?R1-f?&=0.06, LIR,+@&=O.118,
and p= 1 was calculated by the method of reference 14.
The truncated-cone drag coefficient (0.0228) is 18 percent
higher than the minimum drag coefficient (0.0193).

r w, +&’?

.m

-w

.40

.

1 !I 1 t I t 1 t I

o .2 .4 .6 .8 1.0 1.2
Distonce alocq axis, X

l?IGmLE6.—Radius at intermediate point and slopIcM at ho ends of

minimum-external-drag transition section for four Mm@uratione.

fIR1-19RS=0.&
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CONCLUDING REMARKS

The drag integml for bodies of revolution at supersonic
speeds is presented in a double-integral form depending ex-
plicitly upon the source-distribution function. The drag
integral is applicable to a larger clsss of bodies than the usual
slender-body drag expression and reduces to the Ward drsg
expression in the proper limit. Results for cones indicate
that the drsg integral with mass-flow continuity ss the
boundary condition gives good first-order results in the mod-
erate supersonic range.

The minimum-wave-drag problem for a transition section
connecting two semi-infinite cylinders is solved with the aid
of a suitably chosen auxilisry cmdition. The source distr-
ibution, the minimum drag, the slopm at the two ends of the
section, and the radius at an intermediate point are obtained
in terms of elementary functions. The entire shape is ob-
tained in an integral form amenable to numericsl evaluation.
The minimum-drag shape obeys the G6thert similarity rule.
The minimum-drsg shape and the minimum drag are un-
changed to the first order when the flow direction is ieversed.
The projectile tip is a special csse and is compared with the
Von K6rm&n projectile tip.

LANGLEY &RONA~CAL lkBOuTORY,

NATIONAL ADVISORY Commrrmn FoB hRoNAumcs,

IIARGLIIYl?mLD,VA.,March 1,1964.
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Distance abmg axis, X

FIGURE 7.—Radiuaat intermediate point and slopss d two ends of

*um~ -dreg transition seotion for five oonllgumtions.

9RI–13&=0.05. Entfro contour shown for pR1+p%=O.118,

APPENDrx
INTEGRATION IN EQUATION (11) .

The integral of equation (11)is

JI= ‘ (Z–g+z–?jdz
HW&(z-f)*-pV?l~ ~(z— 7j’)2-/?2R12 (Al)

where the lower limit is the larger of the two quantities
H-BR1 or v+ flR1. The equation may be evaluated in the
following manner. h order to convert the radicand in the
denominator of the integrand into a quadratic function of the
square of the integration variable, the variable is changed by
using

Substitution of equation (A2) into equation (Al) gives

(A3)

.150

,118

.062

.050

where & and & are the appropriate limits for the variable S’.
Since the numerator of the integmnd in equation (A3) is an
odd polynomial in 8, considerable simpliiicntion is effected
by tsking a new variable z proportional to &, such that

s’=z+ ()~ ‘+@R: (A4)

Substituting equation (A4) into equation (A3) yields

J1= “ dz
‘oJ&–pl??(t-q)’[—cosh-l II“ (A6)/3R1(;–TJ SO

(A6)



b~-DRAG DUCT13D AND POINTED BODmS OF REVOLUTION BASED ON LINEARIZED SUPERSOMC =ORY 119

REFERENCES

1, Lighthill, M. J.: Supewnio Flow Paat BodiEs of Revolution.
R. & M. No. 2003, Britiih A. R. C., 1945.

2. Ward, G. N.: Supersonic Flow Past Slender Pointed Bodies.
Quarterly Jour. Meoh. and AppL Math., vol. II, pt. 1, Mar.
1949, pp. 76-97.

3, Lighthill, M. J.: Superwdc Flow Past Slender Bodies of Revolu-
tion the Slope of Whoee Meridian Section is Discontinuous
Quarterly Jour. Mech. and AppL Mat~, VOLI, pt. 1, Mar. 1948.
pp. 90-102.

4, Von ILirnuin, Th.: The Problem of Ikiatance in Compressible
Fluida. R. Accad. d’Italia, Cl. SOL Fia., Mat. e Nat., vol.
XIV, 1936 (Fifth Volta Congress held in Rome, Sept. 30-Oot.
6, 1936.)

6, Seam, William R.:On Projeotiiea of Minimum Wave Drag.
Quarterly AppL Math., VOLIV, no. 4, JarL 1047, pp. 361-366.

6, Haack, W.: Projectile Shapes for Smalkd Wave Drag. Tranala-
t[on No. A9-T-3, Contraot W33-038-a*16004 (16351), ATI
No. 27736, Mr Matariel Comrnan~ U. S. Air Force, Brown
Univ., 1948.

7. Busemann, A: Heutiger Stand der Gwhoestheorie. Bericht 139
der Lilienthal-Gmellschaft fUr Luftfahrtforwhung, 1941, pp.
5-13.

8.

9.

10.

11.

12.

13.

14.

Ferrari, Carlo: The Body and Ogival Contour Giving Minimum
Wave Drag. Rep. No. CAL-55, Cornell Aero. Lab., Inc., Oot.
1951.

Ferrari, Carlo: Determination of the External Contour of a Body
of Revolution With a Central Duet So Aa To Give Minimum
Drag in Supersonic Flow, With Various Perimetral C%nditiona
Imposed Upon the Missile Geometry. Rep. No. AF-81+A-1
(Contmot No. N60ri-119, T. O. IV), ~mell Aero. Lab., Ins,
Mar. 1953.

Lamb, Horace: Hydrodynamics. Siih ed, Oambndge Univ.
Prem, 1932, p. 527.

G5thert, B.: Plane and Three-Dimensional Flow at High Subsonio
Speeds. NACA TM 1105, 1946.

Van Dyke, Milton D.: A Study of Seeond-Order Superaordo Flow
Theory. NACA Rep. 1081, 1952. (Supersed@ NACA TN
2200.)

Staffof the Computing SeMon, Center of Analysia (Under Direc-
tion of !ZdenLk Kopal): Tablea of Supemonio Flow Around
tins. Teoh. Rep. No. 1, M. L T., 1947.

Brown, Clinton E., and Parker, Hermon M.: A Method for the
Calculation of Estemal Lift, Moment, and Pressure Drag of
Slender Open-Nose Bodies of Revolution at Supersonic Speeds.
NACA RJ2p.808, 1945. (Supersedes NACA‘WRL-720J

413672-57-9



.— ——.——.


